
Message Broker Monitoring, Auditing and
Statistics

David Gorman (gormand@uk.ibm.com)
IBM Hursley

1st March 2011

Agenda

• Monitoring and Auditing

• Accounting and Statistics

• Resource Statistics

2

What is Business Activity Monitoring?

• Ability to monitor your business performance

• Giving a real-time view of what is happening in your business

• Identifying problems in your business processes

• Opportunity to improve business processes and business
competitiveness

• A way of making the business more transparent

• Allows evidence-based decision making

• “X-Ray for business processes”

3

Business Activity Monitoring

• Why?

• Decision-makers need Key Performance Indicators (KPIs)

• Where?

• Best source of KPIs are the applications which run the business

• The ESB has visibility of all of those applications

• How?

• One way is to configure the ESB to produce monitoring events

• Send the monitoring events to a monitoring application for
analysis/display

4

Typical BAM scenario with Message Broker

5

CEI
Repository

CEI
Repository

WebSphere
Business
Monitor

WebSphere
Business
Monitor

Message
Driven
Bean

Message
Driven
Bean

WebSphere Application Server

MQ Pub/Sub topicMQ Pub/Sub topic

Monitor Model

Application

Notes

• The message-driven bean is hosted within WAS.

• So the WAS instance must have an MQ queue manager

• WebSphere Business Monitor can only receive events from the CEI component.

• it would be difficult for WebSphere Message Broker to submit events directly to CEI

• Better to publish in a flexible XML format and allow the MDB to make good for CEI/WBM if required.

• Picture at upper right is displaying Key Performance Indicators

• ‘Business dashboard’

6

N

O

T

E

S

Typical BAM scenario details

• Events are published to an MQ topic

• To allow multiple subscribers

• To allow each subscriber to choose the level of granularity
• Domain / Broker / Execution group / Message flow

• Event format is XML (published schema)

• Designed to be compatible with CBE

• Allows message broker to integrate with other monitoring
applications

• Allows entire message to be captured and logged to a database for
audit purposes

• Events can be forwarded to WebSphere Business Monitor

• Message driven bean provided with the monitoring sample

• Fully supported offering

• Wraps the WMB event in a CBE wrapper and submits to CEI
7

Monitoring support in v6.0 and earlier
releases

• SupportPac IA9V

• Subflow inserted into message flow to emit CBE event

• Not a supported offering

• Configured via XML files

• WBMTM

• An IBM Services custom solution

• Message capture/repair/replay facilities

• Custom event repository

• Custom user interface

• Custom message flow logic

• Very flexible, but very costly in development effort

8

N

O

T

E

S

Notes

• IA9V

• Payload data used ‘extended data elements’ feature of CBE
• Not very good at dealing with complex payload data

• WBM Transaction Monitor

• Aimed at transaction monitoring rather than BAM.

• Customized for each customer/site.
• Only one team of practitioners who know how to do this, so only available to a few large

customers

• Custom message flow logic

• Monitoring events are just XML messages…

• …and broker is very good at XML messages

• but much better to have a properly integrated offering.

9

N

O

T

E

S

Monitoring support in v6.1.0.2

• Monitoring events from message flows

• Any input node can optionally emit transactionStart,
transactionEnd and transactionRollback events.

• But only on input nodes
• Events can contain simple fields from input message payload
• Not possible to capture “output” data from the flow

• Configuration

• Only via the command line
• A ‘monitoring profile’ held in a configurable service
• Monitoring profile is an XML file which conforms to a published

schema

• All input nodes share the same monitoring profile

• New commands mqsichangeflowmonitoring and
mqsireportflowmonitoring.

10

N

O

T

E

S

Notes

• Transaction events

• ‘Rollback’ is only issued if the catch/failure terminals are not wired up on the input node

• So should not be integral to a properly-designed monitoring solution

• Configuration

• This slide is setting up the story for v6.1.0.3, where configuration is much more powerful, and
these v6.1.0.2 command-line facilities are upgraded to become a complete alternative to the
toolkit facilities.

11

N

O

T

E

S

Monitoring Information

• Monitoring Events from message flows

• Any input node can optionally emit transactionStart, transactionEnd
and transactionRollback events.

• Any terminal can emit an event as the message passes through

• All events are optional, and fully configurable

• Events can contain simple or complex data from message payload

• Configuration

• Via the message flow editor
• Excellent support in message flow editor via new Monitoring

page on all nodes.

• Via the command line
• Monitoring profile upgraded to support the new facilities
• mqsichangeflowmonitoring and
mqsireportflowmonitoring updated to support the new
facilities

12

Notes

• Terminal events

• Event is only emitted if the message passes through the terminal in a forward direction

• Events for error conditions should be configured on the nodes attached to the failure/catch
terminals of the input node(s)

• Configuration

• Purposely designed to be administered without the toolkit

• So command-line / monitoring profile can do anything that the toolkit can do

• …and toolkit config can be exported as monitoring profile to ease the transition (see later
slide re: mqsireportflowmonitoring)

13

N

O

T

E

S

Monitoring support

14Note: terminals are coloured ‘red’ on this slide to highlight those terminals with monitoring events defined.

Notes

• Note the Monitoring page in the Properties view

• The canvas of the message flow has been clicked, so it is displaying configured event
sources for the message flow

• not all event sources

• Clicking an individual node would show event sources for that node

• How many potential event sources are there in this flow?

• 15 (3 terminal events on each node + the 3 transaction events on the input node)

• Highlight the Event Source Address column

• ESA is used to address an event source from the command line, or from a monitoring profile.
It will be unique within a message flow, provided that the flow does not contain duplicate node
names.

• Terminals highlighted in red have events

• Not displayed like this in the editor!

15

N

O

T

E

S

Monitoring support 2

16

These event sources
are internal to the input
node – not located on a

terminal

Note: terminals are coloured ‘red’ on this slide to highlight those terminals with monitoring events defined.

Monitoring support 3

17Note: terminals are coloured ‘red’ on this slide to highlight those terminals with monitoring events defined.

Monitoring support 4

18Note: terminals are coloured ‘red’ on this slide to highlight those terminals with monitoring events defined.

Monitoring event format details

EventData

MessageFlowData

SimpleContent

ComplexContent

EventIdentity

EventSequence

EventCorrelation

broker

executionGroup

messageFlow

node

EventPointData

ApplicationData

BitstreamData
Encoding

Bitstream

localTransactionId
parentTransactionId
globalTransactionId

creationTime

counter

eventName

brokerName / uuid

executionGroupName /
uuid

flowName / uuid

nodeName

terminalName

name
value
dataType

name

Notes

• EventPointData/EventData

• Provides the 3 main items of data for a monitoring application
• Identity, Correlation, Sequence

• EventPointData/MessageFlowData

• Should be self-explanatory – no surprises here

• ApplicationData

• Can come from message headers or body

• Automatically included as XML, even if source message was non-XML

• If the XPath/ESQL returned a simple element, it is placed in simpleContent, else it goes into
complexContent

• simpleContent was the only available option in v6.1.0.2

• BitstreamData

• More details in later slides

20

N

O

T

E

S

Monitoring event format : after
Message Driven Bean

21

extendedDataElements

Encoding

EventData

MessageFlowData

SimpleContent

ComplexContent

EventIdentity

EventSequence

EventCorrelation

broker

executionGroup

messageFlow

node

EventPointData

ApplicationData

BitstreamData
Bitstream

localTransactionId
parentTransactionId
globalTransactionId

creationTime

eventName

brokerName / uuid

executionGroupName / uuid

flowName / uuid

nodeName

terminalName

name
value
dataType

name

CommonBaseEvent

reporterComponentId

msgDataElement

xs:any

creationTime

sourceComponentId

situation

contextDataElements

Notes

• MDB is wrapping the WMB monitoring event in a CBE envelope

• Fields in the CBE should be familiar to some in the audience

• Note that the WMB data goes into the xs:any slot in the CBE

• Most fields in the CBE wrapper are simply left at their default values

• Including @cbe:severity/@cbe:priority

• This is now the recommended way to construct a CBE which contains complex application data

• Because extendedDataElements is poor at carrying complex subtrees

22

N

O

T

E

S

Monitoring events from message
broker

• Good interoperability with WebSphere Business Monitor

• Identity, correlation and sequencing of events is explicitly built
into the event format

• Flexibility

• Events can be consumed by one or more clients subscribing
to the appropriate topic. Topic can include wildcards, allowing
the scope of the subscription to vary

$SYS/Broker/<brokerName>/Monitoring/<executio

nGroupName>/<flowName>

• Events are emitted in a published (documented) XML format
(schema provided), MDB supplied with the product submits
events to CEI

23

Monitoring events : features

• Unique default event name is automatically assigned

• Can be overridden with a fixed value

• Can be read from message payload

• Sequence field is automatically populated

• Creation time of event

• Auto incrementing counter

• Start at 1 for the first event issued

• Increment by 1 on each subsequent event emitted

• Reset to 1 at the start of the next message

• Correlator field in event is automatically populated

• Same for all events from one invocation of a flow

• Many more options (details later)

24

Configuring: Adding an event to a
node

25

Select the event source.
Input nodes include the
special ‘transaction’ event
sources

Configuring: Customizing an event

26

The event name can be a literal
value, or can be extracted from the

message payload using an
expression

Configuring: Adding a filter to an event

XPATH expression to indicate if
this event should be emitted or not

Configuring: Adding a filter to an event
(2)

• Expression evaluates to

• True – event emitted

• False – event not emitted

• Evaluated at runtime

• Set on event source definition

• Expression can reference fields from anywhere in the message
assembly

• XPath expression builder support available

• Event filter appears on Monitoring summary table

N

O

T

E

S

Notes:

• Event Filter section in the Monitoring tab (V7 onwards)

• Enables user to filter out events which do not match a business rule. So events can be filtered at
Message Broker rather than emitting to Business Monitor and filtering there - which will help
performance

• The event filter can be set to a numeric, boolean or string XPath expression which will evaluate to
boolean true or false. Typically the result of an a = 'b' or x > 'y' type test

• If the expression evaluates to true then events are emitted

• If the expression evaluates to false then events are not emitted

• The default setting is true()

N

O

T

E

S

Configuring: Customizing an event -
Correlation

30

Use this option when your
events must be correlated

with events from an
external process

Correlators

• Each event contains up to three correlation fields

• localTransactionId

• Automatically populated with a unique identifier which will be the
same for all events emitted during a single invocation of the
message flow

• Its value can be set from a field in the message (often from a
header). Once set, later events inherit the same value.

• parentTransactionId and globalTransactionId

• Empty by default.

• Value can be set from a field in the message (often from a
header). Once set, later events inherit the same value.

• Simple scenarios are easy, complex scenarios are possible.

31

N

O

T

E

S

Notes

• If correlator is read from a message header

• Only specify it once

• Usually on the transactionStart event

• Do not copy the XPath/ESQL expression to later event definitions

• It would work, but would incur a needless performance penalty

• Correlators are cached in the Environment tree, and later event sources automatically reuse
them if they have been set.

32

N

O

T

E

S

Configuring: Customizing an event -
Transaction

Choose the transaction
under which the event is

emitted

Notes:

• What are the different units of work?

• When a message is processed, the MQ updates are included in a unit of work referred to as the
“Message Flow” unit of work. It is committed if the message processing is successful and rolled
back if it fails

• The “Independent” unit of work is a separate unit of work which is created and committed
regardless of whether the message is processed successfully or not. Use this for events, such
as those related to error paths, that must be published even if the flow fails.

• If you don’t want a monitoring event to be included in any unit of work, choose the “None” option

N

O

T

E

S

Notes 2:

• Some differences in behaviour depending on the event type:

• Consider the following events generated from a message flow:
• Seq no 1 a transaction start event
• Seq no 2 an event in the message flow unit of work
• Seq no 3 an event in the independent unit of work
• Seq no 4 an event specified as not in a unit of work
• Seq no 5 an event in the message flow unit of work
• Seq no 6 a transaction end or rollback event (see below)
• If the message is successful, all these events, plus seq no 6, a transaction end event, are

published
• If the message fails, events 2 and 5 are rolled back and only events 1, 3, 4 and seq no 6, a

transaction rollback event, are published
• Note that as event 4 is published as soon as it is generated, outside of a unit of work, it will

be the first to appear external to Message Broker and is unaffected by any commit or
rollback processing

N

O

T

E

S

Customizing an event – payload data

36

Click here to add
data from

headers, payload
or environment

Customizing an event – payload data

37

Click here to add
data from

headers, payload
or environment

Payload data

• Multiple XPath queries can be specified

• Or ESQL paths; the support for both is generic

• XPath builder provides assistance with constructing the path

• Simple fields automatically go into applicationData/simpleContent

• If monitoring profile is used, the @dataType attribute can be set for
each item of simpleContent. Even if the message broker tree holds
the data as characters, WBM can be instructed to treat it as integer
/ date etc

• Complex fields automatically go into applicationData/complexContent

• Non-XML data from the MRM parser is automatically converted to
XML when included in a monitoring event.

38

Customizing an event – bitstream data

39

Click here to add
part or all of the
bitstream to the

event

Customizing an event – bitstream data

40

Include headers,
body or entire

bitstream

Customizing an event – bitstream data

41

Encode bitstream
as hexBinary,

base64 or CData

Click here to add
part or all of the
bitstream to the

event

Notes

• CData format for bitstream

• Not safe unless you know that the XML is free from invalid characters

• NB: CData does not protect you from invalid XML characters

• So not usually safe for use with ‘All’

• Because that will include headers which may contain binary data.

• Recommendation: Use CData encoding with care, and only with content set to ‘Body’

42

N

O

T

E

S

Bitstream data

• Bitstream data for auditing

• Not expected to be used in standard BAM scenarios.

• Events can be captured and written to a database.

• Bitstream data for resubmission

• WMBTM offering can provide capture/repair/resubmit based on the
new monitoring events

• Custom solutions are also possible

43

N

O

T

E

S

Generate Monitoring information for
Websphere Business Monitor

• Using an export monitoring information option a user can use a
Generate Monitor Model wizard to create a model which has
automatically created:

• Inbound events for each event source defined in the message flow
• event parts describing event payload
• filter condition
• correlation expression
• event sequence path expression

• localTransactionId defined as a key

• Additional metrics and KPIs are available by selecting templates
during the Generate Monitor Model wizard

• Log file created in Message Broker message flow project to show
output from generate process

Exporting Message Flow monitoring
information

Select Application
Monitoring

Information from the
Business Monitoring

folder

Import Monitoring Information into
WebSphere Business Monitor Toolkit

Select Import then Application
monitoring information .zip file

from Business Monitoring folder

Generate Monitor Model (multi-step
process)

Select message flow to
choose Templates

from Monitoring
Templates page

Business Space Manager

Dashboard populated with
data from Message

Broker events

Command Line:
mqsichangeflowmonitoring

• v6.1.0.2 usage still supported.

• -c to activate monitoring for the specified message flow(s)

• -m to set name of monitoring profile to use for the message flow(s)

• Extra flags –s and -i

• enable and disable individual event sources in a message flow

• Multiple event sources can be modified in a single command
invocation

• No need to edit message flow and redeploy

49

N

O

T

E

S

Command Line:
mqsireportflowmonitoring

• v6.1.0.2 usage still supported.

• Reports whether monitoring is active, and name of monitoring
profile

• Extra –n flag

• report all configured event sources for a single message flow

• Extra –a flag

• report all available event sources in a single message flow

• Extra –x –p <path> flags

• Export the current monitoring properties as a monitoring profile.

• If monitoring profile is in use, registry contents are written to file

• If node properties are in use, XML is constructed from them

• Tip: Use this to easily construct a monitoring profile, rather
than hand-crafting it in a schema editor.

50

N

O

T

E

S

Example output from
mqsireportflowmonitoring

Example output from mqsireportflowmonitoring command with –n option

BIP8911I: Monitoring settings for flow 'TotalPurchaseOrderFlow'

in execution group 'EventsEmitter.1' - State?: active, ProfileName: ''.

BIP8912I: Event: 'InputOrder.transaction.Start', Event name: 'InputOrder.Trans

ctionStart', Configured?: yes, State?: enabled

BIP8912I: Event: 'InputOrder.transaction.End', Event name: 'InputOrder.Transac

ionEnd', Configured?: yes, State?: enabled

BIP8912I: Event: 'InputOrder.transaction.Rollback', Event name: 'InputOrder.Tr

nsactionRollback', Configured?: yes, State?: enabled

BIP8912I: Event: 'GoldOrderTotal.terminal.in', Event name: 'GoldOrderTotal.InT

rminal', Configured?: yes, State?: enabled

BIP8912I: Event: 'RegularOrderTotal.terminal.in', Event name: 'RegularOrderTot

l.InTerminal', Configured?: yes, State?: enabled

BIP8071I: Successful command completion.

51

N

O

T

E

S

Notes

• Refer back to first screenshot

• mqsireportflowmonitoring with –n option is equivalent to

selecting the message flow canvas.

• Both will list the configured event sources

• mqsireportflowmonitoring with –a option is useful when you

need to discover the event source addresses of the available event
sources.

• So that you can write a monitoring profile which configures them

• …but there’s a better way

• mqsireportflowmonitoring with –x –p allows you to avoid

hand-crafting the monitoring profile.

52

N

O

T

E

S

Diagnosing problems

• Basic diagnosis

• Check that monitoring is active for the message flow itself

• Issue mqsireportflowmonitoring with –n option to see the list of
active event sources.

• Take a user trace, and look for BIP3912 which is logged every time
a message flow emits an event.

53

N

O

T

E

S

More information

• Product documentation

• http://publib.boulder.ibm.com/infocenter/wmbhelp/v

6r1m0/topic/com.ibm.etools.mft.doc/ac37850_.htm

• Sample supplied with Message Broker Toolkit

• End to end scenario with KPIs generated in WBM.

54

Message Flow accounting and statistics

“Message flow accounting and statistics data is the
information that can be collected by a broker to
record performance and operating details of
message flow execution.”

Areas of Interest

Broker

Execution group (process)

Node

Message
Flow

Thread

Message
Model

Terminals

�Before we understand Accounting and Statistics, let's just recall the three most important concepts in the broker.

�Message Flows: Flows represents the message routing and transformations required to join together
applications through a broker. Each flow takes an input message and (usually) generates one or more output
messages, potentially in different physical formats for connected applications to process. In the example shown,
a message flow might take an MQ message containing XML, and make a copy that's unchanged for an XML
literate server, and another copy that's transformed to a record based format to drive an existing CICS
application. Note that the message flow can also deal with error conditions, and drive appropriate processing in
these cases. Message flows can be made multithreaded using the "additionalInstances" flow attribute.

�Message Nodes: Nodes represents the individual operations of which a flow is comprised. The broker supplies
nodes to get and put messages to queues, perform database queries and updates and so on. Each node takes
an input message and usually generates one or more output messages. The result of the processing occurring in
each node determines which set of outputs ("terminals") are driven and therefore which connected nodes
subsequently receive control.

�Message Modelling: As messages pass through a broker, either being read from an input, or written to an
output, they are transformed between their physical or "wire" format (XML, Record, Tagged) and a tree
representation. Within broker nodes, ESQL is used as a single, standard language to perform message and
database manipulation. As messages and parsing are at the core of the implementation it is important to gather
information on their processing.

Notes

N

O

T

E

S

What Data is Collected?

Message Flow

�ExecutionGroup name

�Broker name

�Flow name

�Sample time, start, end

�"Archive" or "Snapshot"

�Msg: Size(Total,Min,Max), number
processed,bytes processed

�Times(Total,Min,Max): Elapsed,CPU

�Time: Waiting for input

�Threads: Total, high water count

�Commit/backout count

�Error counts

Threads

� Arbitrary thread number

� Msg: Total processed

� Total Times: Elapsed, CPU, Wait,

Input Wait

� Msg: Min, Max input size

Nodes

� Label name

� Type

� Times(Total,Min,Max):
Elapsed,CPU,

� Invocation count

� Msg: Size(Total,Min,Max),

� number input messages
processed

� Bytes processed

+ Terminals

�Labels and Counts

�Four Distinct Types of Data

�These correspond to Flows, Nodes, Terminals and Threads. We now give a brief description of the data collected. If you're familiar with the
subject, there are few surprises here, but if this area is new, you should be pleasantly surprised with this information!

�Message Flow Statistics

�ExecutionGroup name, Broker name and Flow name are self explanatory. You also receive the flow labels and UUIDs.

�Sample time, start, end: The time range for the sample collected.

�"Archive" or "Snapshot": Whether the interval was an "Archive" or "Snapshot" interval. Note the difference - you don't want to double count these
records, if you're collecting both records, e.g. diagnosing a problem via snapshot when archive is active.

�Msg: Size(Total,Minimum,Maximum), number processed, bytes processed: The number of messages and their total, minimum, maximum size.
Also note the total number of messages and bytes processed in the interval by the flow.

�Times(Total,Minimum,Maximum): Elapsed, CPU, Wait: These show how much CPU and elapsed time the flow used to process the messages. For
cases where I/O is an important factor the wait times may prove more interesting.

�Time: Waiting for input: How long the flow was not processing messages in the interval. Gives you an idea of the level of activity.

�Threads: Total, high water count: How many threads the flow has assigned to it, and the maximum in use at any given time. You might like to use
the thread statistics to determine whether "additionalInstances" is set appropriately.

�Commit/backout count: How many messages were backed out and committed. Useful check messages processed as expected.

�Thread Statistics

�Arbitrary thread number: This has no significance other than identification. One record is produced per thread.

�Msg: Total processed: The number of messages processed by the thread in the interval.

�Total Times: Elapsed, CPU, Wait, Input Wait:: Processing times similar to those for flows, but we can see how effective the threads are
"supporting" the flow's processing.

�Msg: Min, Max input size: Various statistical sizes of messages processed by the thread.

�Node Statistics

�Label name and Type: to identify the node. One record is produced per node.

�Times(Total,Minimum,Maximum): Elapsed, CPU, Wait: Standard statistical times to give node level granularity of processing. Allows isolation of
hot spots, or charging according to specific processing.

�Invocation count: How many times the node has been traversed. This is useful to understand the critical path in a flow.

�Msg: Size(Total,Minimum,Maximum), number processed, bytes processed: Various statistics on of msgs processed by the thread.

+Terminals. One record is produced per terminal.

�Labels of each terminal within a node and count of the number of times traversed. Identify critical path and exceptions!

Notes

N

O

T

E

S

archive

snapshot

SYS

PLEX

Broker
publish

subscribe

subscribers

Pub/Sub

D

A

T

A

UserTrace

SMF

ENF37

Output

Output destinations

SMF

Type 117

subtype 1,2

BIP2380 –
BIP2383

Notes
�Destinations and Collection Scope

�This foil identies the main areas for consideration when examining accounting and statistics data

�When are the data produced?

�In what format are the data?

�How are the data accessed?

�What is the granularity and scope of the information that can be seen?

�Accounting and Statistics Timers

�Information is gathered at regular intervals according to timers. There are two classes of timers, internal and external.

�Archive and Snapshot timers are internal timers set by broker parameters which govern when these data are written to their destinations.

�An external timer is available on z/OS, namely ENF37. This can be used to to drive SMF, UserTrace and PubSub intervals. ENF is also important to allow
consolidated reporting of SMF information across major subsystems, e.g. you might coordinate queue manager and broker activity to best understand how to
tune your queue manager for particular flows.

�A Variety of Output Destinations and Formats

�It's possible to gather this information in different formats according to technology used to access it.

�Publish Subscribe: You can use the built-in WMQI publish/subscribe technology to report and retrieve A&S information. This is a very flexible option. Data
provided over publish subscribe is provided in an XML format.

�UserTrace: This is the default mechanism which allows you to gather A&S information on the broker's file system. Data provided in UserTrace is provided as
architected BIP messages, BIP2380,1,2,3.

�z/OS SMF: For z/OS, this option generates SMF type 117 records having subtypes 1 and 2 depending on the granularity of information requested by the user for
a particular flow.

�You may request different output destinations for Snapshot and Archive Stats by Message Flow.

�Options for Reporting Scope and Granularity

�UserTrace is collected for the broker. If several brokers are operating on a single machine, then several datasets may be accessed with ease. This data is
human readable and relatively useful if you're prototyping.

�PubSub can be collected for any broker throughout the domain. This is incredibly powerful; it means you can sit anywhere in a domain and request information
about particular nodes in a flow on a particular execution group on a broker on a differnt machine! OR you could put in wild card subscriptions to gather
information from several different sources! XML is very structured, which makes it ideal for multi platform reporting.

�z/OS SMF can be collected for any broker within a SYSPLEX. It can be integrated with all other SMF enabled z/OS products and subsystems - literally hundreds!

�Moreover, the fact that each report has the details of the broker and execution group in it measn that you can aggregate information as well.

�An extensible architecture into the future.

�If we require additional writer in the future (for example JMX), it is very easy to "plug in" this destination type, as the writing and collection mechanisms are
separated from each other.

N

O

T

E

S

XML Publish Subscribe Output

<psc>

<Command>Publish</Command>

<PubOpt>RetainPub</PubOpt>

<Topic>$SYS/Broker/MQ02BRK/StatisticsAccounting/Archive/default/XMLflow</Topic>

</psc>

<WMQIStatisticsAccounting RecordType="Archive" RecordCode="StatsSettingsModified">

<MessageFlow BrokerLabel="MQ02BRK" BrokerUUID="7d951e31-f200-0000-0080-efe1b9d849dc"

MessageFlowName="XMLflow" StartDate="2003-01-17" StartTime="14:44:14.550824"

TotalNumberOfBackouts="0", AccountingOrigin="DEPT A"/>

<Threads Number="1">

<ThreadStatistics Number="0" TotalNumberOfInputMessages="2" TotalElapsedTime="10005200" ...

ElapsedTimeWaitingForInputMessage="10001425" MinimumSizeOfInputMessages="0" />

</Threads>

<Nodes Number="3">

<NodeStatistics Label="FAILQueue" Type="MQOutput" TotalElapsedTime="0“

MaximumElapsedTime="" NumberOfInputTerminals="1" NumberOfOutputTerminals="2">

<TerminalStatistics Label="failure" Type="Output" CountOfInvocations="0" />

<TerminalStatistics Label="in" Type="Input" CountOfInvocations="0" />

<TerminalStatistics Label="out" Type="Output" CountOfInvocations="0" />

</NodeStatistics>...

</Nodes>

</WMQIStatisticsAccounting>

�We have shown a very simple XML Publish Subscribe message. Note the 5 sections

�Publish Subscribe folder in the RFH2

�Message flow folder

�Threads folder

�Nodes folder: This folder may contains several terminals folders if this granularity of reporting has been requested.

�Published messages will always include these folders, even if the appropriate data isn't currently being collected.

�SnapShot and Archive publications are available to measure the broker.

�Both short term "SnapShot", and longer term "Archive" data messages are published. Since the SnapShot data is intended to be used for
performance analysis (being sent to a real time monitor, where it is graphically displayed, for example), it is published as retained and non-
persistent. Archive data is used for accounting, so an audit trail is more important - therefore it is published persistently and retained, so that late
subscribers can get the most recent update. Using MQ as a publication delivery mechanism is recommended as you don't want to loose these
,messages if you're using them for chargeback purposes!

�All publications are global which means they can be collected anywhere in the broker domain. And don't forget that multiple subscribers means
that the data can be collected by more than one subscriber.

�Publication topics allow subscribers to retrieve a broad range of information

�The publication tree contains the broker, execution group label and flow label, which allows subscribers anywhere in the broker domain to request
a highly flexible *range* of information. This could vary from information on a specific flow running in a specific execution group (and more, see
later), to all information about every flow running within the domain!

�Snapshot publications are made according to the topic tree:

�$SYS/Broker/<brokerName>/StatisticsAccounting/SnapShot/<executionGroupLabel>/<messageFlowLabel>

�Archive publications are made according to the topic tree:

�$SYS/Broker/<brokerName>/StatisticsAccounting/Archive/<executionGroupLabel>/<messageFlowLabel>

�Hopefully you can see how easy it would be request only publications for a particular flow. For example, what would a subscription for
$SYS/Broker/myBroker/StatisticsAccounting/SnapShot/+/popularFlow return? (Ans: SnapShot information on "importantFlow" in *all* execution
groups on "myBroker").

�Moreover, using ESQL filters you can further refine you subscriptions to examine the *contents* of A&S information. Subscribe for information
with certain values - maybe to generate alerts when certain terminals are being driven more than you expect!

�Note that you should be careful not to "double count" SnapShot and Archive information!

�Publish Subscribe Flexibility

�This mechanism for collection is very granular and allows you to gather data from anywhere and everywhere inside the broker domain.

Notes

N

O

T

E

S

UserTrace Output
.../.../agent.userTrace.bin.0

�

BIP2380I: WMQI message flow statistics. ProcessID='196767', Key='3',

Type='SnapShot', Reason='Snapshot', BrokerLabel='MQ01BRK',

BrokerUUID='a0a1a981-f000-0000-0080-9f945b3d6b5b',

ExecutionGroupName='PubSubGrp', MaximumElapsedTime='20457211',

MinimumElapsedTime='20457211', TotalNumberOfBackouts='0'.

...

Statistical information for message flow 'PubSubTest' in broker

'MQ01BRK'.

This is an information message produced by WMQI statistics.

BIP2381I: WMQI thread statistics. ProcessID...

Key='3', Number='0', TotalNumberOfInputMessages='1',

TotalElapsedTime='20457211', TotalCPUTime='395405',

CPUTimeWaitingForInputMessage='10425',

ElapsedTimeWaitingForInputMessage='3302147',

TotalSizeOfInputMessages='690', MaximumSizeOfInputMessages='690',

BIP2382I: WMQI node statistics. ProcessID=..., Key='3', Label='', Type='

', TotalElapsedTime='0', MaximumElapsedTime='0', MinimumElapsedTime='0',

TotalCPUTime='0', MaximumCPUTime='0', MinimumCPUTime='0',

NumberOfOutputTerminals='1'.

Notes

�UserTrace uses architected BIP messages to report data

�The following BIP messages are written to UserTrace by the broker.

�BIP2380 includes message flow data.

�BIP2381 includes thread data. One message per thread data collected.

�BIP2382 includes node data. One message per node data collected.

�BIP2383 includes terminal data. One message per terminal data collected, per Node.

�If output is to UserTrace, BIP2380 will always be written. BIP2381, BIP2382 and BIP2383 will only be written if the appropriate data is
currently being collected.

�Collation of BIP messages

�As several threads groups may be writing to the trace at the same time, a mechanism is provided to associated userTrace records with
each other.

�Each BIP message starts with a ProcessID and KEY value, which can be used to group BIP messages issued for a particular Archive or
Snapshot instance.

�KEY is a numeric value, which is incremented for each call to the UserTrace writer. It starts with value 0, and is reset each time the DFE
address space is started.

�PROCESSID is the ID of the process in which the UserTrace writer is running.

�UserTrace Collection

�When writing to UserTrace, the broker will always write to the UserTrace files, regardless of current UserTrace settings. This makes sense
because it would be annoying to have to turn on UserTrace to get accounting and statistics information, as well as it being full of other less
interesting (possibly) UserTrace not related to accounting and statistics.

�UserTrace files are formatted in the normal way using mqsireadlog and mqsiformatlog.

�User Trace Benefits

�User Trace is a quick way to measure the performance characteristics of a message flow on the machine you running on. Typically
individual developers doing a high level performance overview might use user trace to get a feel for the behaviour of their message flow.

N

O

T

E

S

BipSmf.h

�

Type 117

SubType 1

Threads?

Message flow

Flows/Threads

Message flow

data

Thread Data

Terminal

data

SubType 2

Terminals>0

Message flow

Message flow

data

Nodes

Terminal

data

Node data

Terminal

data

SubType 2

Terminals==0

Message flow

Message flow

data

Nodes

...

Node data

Node data

Node data

...

...

Thread

Data

Including Nodes

only

Including

Nodes+Terminals
1 1 N

z/OS SMF Record Structure

Notes

�SMF 117 records describe the A&S information

�The subtype of SMF 117 records written depends on the data currently being collected.

�A type1 record is produced when a flow is only collecting message flow data or Threads data. A single
type1 record is produced with all threads included.

�Type2 records are produced when a flow is collecting nodes data. When *only* nodes data is collected, a
single type 2 record is written to SMF, whereas when nodes *and* terminals are being collected, multiple
type 2 records are written to SMF.

�A sample formatter is available to get you started.

�We provide a sample formatter which produces output very similar to user trace.

�The sample formatter also outputs information in a format ready for DFSORT so that you can do highly
flexible post processing on the collected data.

�See SupportPac IPxx for more details on this.

�BipSMF.h describes the SMF records

�You can use the sample formatter and the BipSMF.h header file to produce your own reports.

�The broker userid must be permitted to the BPX.SMF facility class profile to write SMF records.

N

O

T

E

S

• The Message Broker
Explorer enables you to
start/stop message flow
statistics on the broker,
and view the output.

• New in V7 (although
supportpac IS02
available for V6.1)

• Warnings are displayed
advising there may be a
performance impact
(typically ~3%)

View accounting/statistics in MBX

IsRequest

Valid?

GetRequest

GenerateWS
InvokeWS

ResponseTo

OutputQueue

WriteError

Record
Inform

Administrator

Question: Who pays for this flow?

Chargeback Scenario

Accounting Origin

<WMQIStatisticsAccounting RecordType="Archive"

<MessageFlow BrokerLabel="TestBroker3" BrokerUUI

ExecutionGroupName="default" Execu

MessageFlowName="ParentFlow" Start

AccountingOrigin="Dept A"/>

...

Dept A

Dept B

De
pt
 C

SET Environment.Broker.Accounting.Origin =

InputRoot.XML.DepartmentName; -- Dept A,B,C

...

(A
no
ny
mo
us
)

�A Chargeback Scenario

�This is the second scenario to examine. It's a bit less frantic that the Performance Analysis Scenario, thank goodness.

�Let's imagine that you've got your flow up and running and it's performing well (it was the bad messages being sent after all, not the
"Inform Administrator" user-defined node. (I knew it!) You've got a whole raft of people that want to use the capability provided by
your flow. In fact, they don't even know they are using a message flow - they just send a message to a queue and get a response.
Excellent - the world couldn't be better, you've got happy users.

�Now, you do some calculations and realize that to cope with all these users of your flow, you're going to be using quite a lot of CPU
and IO resources. You're running an infrastructure group which charges back the cost of these resources ("CPU's don't grow on
trees you know!") to the folk who generate the work in the first place.

�Therefore, you know how much the computer resource is going to cost you and you want to be able to get this cost, or some
appropriate portion of it, from these users. This isn't fair or unfair - it's how many infrastructure groups recover their costs.

�Different Users make Work for your Flows

�Now the originators of the messages can be many and varied. For example, some messages might correspond to input from real
people (they still exist apparently), however, work may come from other organizations, geographical areas (countries even), or
other computer systems.

�You might identify and separate different channels of input, using WebSphere MQ queues for example, which naturally partition the
users. Different messages flows might be running against these different input streams.

�In more complex cases, many different users (e.g. many clients), or many classes of users (partner organizations, other machines)
might actually share a message flow. A message flow might therefore be processing work for many different users of different
classes.

�Accounting for this Usage

�However, the basic problem is that you want to see how much resource is being used, so that you can charge your users
accordingly for the you are incurring to maintain this service.

�The cost is exactly the same as the metrics we discussed in the performance analysis scenario. More on this soon.

�But how do we identify the users. We'll return to this problem in some detail later on, but suffice it to say that there needs to be
some way to separate the users, but flow, input queue, execution group, broker, whatever. We'll see that the users will need to be
mapped to the same collections that we discussed earlier.

�These two scenarios highlight the difference between accounting and statistics. In the performance scenario, you were treating the
numbers as statistics - they gave you an understanding of the behaviour of your message flows. When you use these same
numbers with a view to charging for them, then the your focus has become one of accounting for usage. And that's the difference
between accounting and statistics - the way in which one set of numbers can be used in two different contexts.

�Let's now have a look at the Chargeback analysis we might like to perform.

Notes

N

O

T

E

S

�AccoutingOrigin Allows you to Classify Reports

�In a consolidated flow, i.e. one being used by several different users or classes of users, it's important to be able to identify the costs associated
with a particular user or class of user. From Version 5, you can request Accounting and Statistics reports to be generated to identify the originator
of the input messages.

�This allows brokers to have a minimum number of flows for accounting purposes and still chargeback, benefitting from economy of scale, and
administrative burden reduction.

�The foil shows messages originating from three different departments - A, B and C. These messages are all processed by the same message
flow, but the gathered reports identify the cost breakdown by originating department.

�If you examine the report snippet, you can see that the AccountingOrigin tag identifies the report as belonging to "Dept. A".

�The Accounting origin is set inside the flow when it has determined the origin of the message. Any technique can be used to do determine this;
for example a flow might use a field in the MQMD, or a field in the body of the message. The AccountingOrigin is completely virtual, for example
it might periods of the day to allow you to profile usage with time! (You could also use archive statistics for this.)

�Messages are Classified by the Flow

�As a message passes through a message flow, if the flow at some points decides that the message needs to be classified, it may do so.

�It sets the Environment.Broker.Accounting.Origin tree element to identify the origin. When the message has been finished with, the

data related to its processing is collected separately to messages with different AccountingOrigin.

�Classification is usually done using User defined ESQL in a Compute node (or using a plug-in node, since the Environment tree is available to all
nodes) which sets a field thus:

�SET Environment.Broker.Accounting.Origin = '...'

�When the message has been processed by the flow the information identifying the origin is stored with all the other information for this origin and
separate to information from other origins. Different origins can therefore be collected and reported separately.

�AccountingOrigin needs to be Enabled

�This function is enabled using a new option on the mqsichangeflowstats command (see later). It is not always enabled because there is extra
processing associated with this processing and although not excessive, it would have an impact on performance.

�You should be aware that enabling this function could generate a large volume of reports, that's because you will get a different report for each
AccountingOrigin identified by your flow in a given time period.

�If the function is enabled, and Environment.Broker.Accounting.Origin is not populated then the Statistics and Accounting data

collected while processing that input message will be accumulated to the default Accounting Origin.

�The default value for the AccountingOrigin is "Anonymous".

�If the Accounting Origin function is disabled then the default action is to accumulate all Accounting and Statistics
data tothis default Origin.

Notes

N

O

T

E

S

mqsichangeflowstats <broker name>

-c active | inactive activate/deactivate

-s collect snapshot data

-a collect archive data

-t none | basic thread collection

-n none | basic | advanced node collection

-e <execution group label>

-g all execution groups

-f <message flow label>

-j all message flows

-o smf | xml | usertrace output type

-r reset statistics

-b none | basic accounting Origin

mqsireportflowstats <broker name>

-s report snapshot settings

-a report archive settings

-e <execution group label>

-g all execution groups

-f <message flow label>

-j all message flows

mqsicreatebroker, mqsichangebroker <broker name>

-v set archive interval

Notes: Command Syntax and Usage

N

O

T

E

S

�Controlling and Reporting

�The mqsichangemsgflowstats command is used to start, stop and modify accounting and statistics collection.

�The mqsireportmsgflowstats command is used to determine the current settings for accounting and statistics collection.

�UserTrace is the default output on all platforms.

�z/OS specific SDSF commands

�mqsichangeflowstats

�/F <broker name>,CS

�mqsireportflowstats

�/F <broker name>,RS

�mqsichangebroker

�/F <broker name>,CB

�The command options are for example 'c=' instead of '-c'.

�Option -v (Statistics Major Interval) range is 10 - 144000 (10 mins to 10 days).

�On z/OS only, setting this to zero seconds indicates ENF will be used as the timer.

Notes

N

O

T

E

S

Message Broker Resource Statistics

“Resource statistics are collected by a broker to
record performance and operating details of
resources that are used by execution groups.”

View resource statistics in MBX

• The Message Broker
Explorer enables you to
start/stop resource
statistics on the broker,
and view the output.

• New in V7

• Warnings are displayed
advising there may be a
performance impact
(typically ~1%)

Enabling Resource Statistics on
command line

• Enable resource statistics

• mqsichangeresourcestats brokerName -c active -e

executionGroup

• Disable resource statistics

• mqsichangeresourcestats brokerName -c inactive

• Display current status

• mqsireportresourcestats brokerName -e executionGroup
BIP8940I: Statistics settings for resource type JVM in

execution group default - On?: inactive, measurements:

[CommittedMemoryInMB, etc

BIP8940I: Statistics settings for resource type Sockets

in execution group default - On?: inactive,

measurements: [AverageBytesReceivedPerMessage, etc

• Each command applies to all execution groups if none is specified.

• See Information Center for command syntax, or simply type the command with
no parameters.

N

O

T

E

S

Subscribing to receive statistics

• Resource statistics are published to a well-defined topic

• A user subscribes to a topic string to view the statistics they want, e.g.

• $SYS/Broker/MB7BROKER/ResourceStatistics/default

for statistics related to execution group 'default' on broker 'MB7BROKER‘

• $SYS/Broker/+/ResourceStatistics/+
for all execution groups on all brokers

• One option is to set up a subscription to a queue in MBX

Example publication

<ResourceType name="Sockets">

<resourceIdentifier name="summary" TotalMessages="5"

TotalSocketsOpened="2" AverageSocketsOpenedPerMinute="6"

TotalBytesSent="24484" AverageBytesSentPerSecond="1223"/>

<resourceIdentifier name="localhost.7080" TotalMessages="3"

TotalSocketsOpened="1" AverageSocketsOpenedPerMinute="3"

TotalBytesSent="12891" AverageBytesSentPerSecond="644"/>

...

</ResourceType>

• This is an example of the type of data published for a specific resource – in
this case sockets (shows a subset of the data we actually publish).

• Each resource manager will always publish a ‘summary’ record which
collates the information for the whole execution group

• Some resource managers will also publish finer grained information for
individual resources that they manage. For instance in the sockets case we
publish information about sockets managed for each endpoint that the broker
is sending messages to, and then roll all of these up into the summary
record.

Example: JVM Stats Data (1)

A JVM has two memory areas, Heap and Non Heap, the following properties

are reported for each:

• InitialMemoryInMB

• The initial amount of memory (in megabytes) that the Java virtual
machine requests from the operating system for memory management
during startup.

• UsedMemoryInMB

• The amount of memory currently used (in megabytes).

• CommittedMemoryInMB

• The amount of memory (in megabytes) that is guaranteed to be available
for use by the Java virtual machine.

• MaxMemoryInMB

• The maximum amount of memory (in megabytes) that can be used for
memory management.

• The value -1 is returned for measurements that are undefined or have not
been set.

JVM Stats Data (2) Garbage Collection

A JVM may have one or more garbage collectors to report on. For example

one collector may do minor collections which are frequent but take little time

and another collector may do major collections which are not as frequent but

take considerably more time.The following properties will be reported for

each

• resourceIdentifier name

• The name of the garbage collector that is being reported on.

• CumulativeNumberOfGCCollections

• The total number of garbage collections that have occurred for this
instance of the JVM. Its value may be undefined which is indicated by a
value of -1.

• CumulativeGCTimeInSeconds

• The accumulated garbage collection elapsed time in seconds for this
instance of the JVM.

• Its value may be undefined which is indicated by a value of -1.

JVM Stats – Interpretation

• How much memory is the JVM using?

• OS tools can give you the total memory used by the dataflowengine process, but
do not show you how that memory is divided between Java and non-Java
processing in the execution group. CommittedMemoryInMB tells you how much
memory is currently allocated to the JVM and MaxMemoryInMB tells you how big
this may grow.

• How often am I doing garbage collection?

• If CumulativeNumberOfGCCollections is increasing frequently then the garbage
collection (GC) may be excessive. A certain level of GC is expected and required,
but excessive GC can impact performance. If CumulativeGCTimeInSeconds is
increasing at more than 2 seconds per 20 second stats interval then you should
consider increasing the JVM Max Heap size for your execution group. Also inspect
any Java Plugin nodes or Java Compute nodes in your message flows to ensure
that you are not creating and deleting many objects that could be reused.

• Should I change my min or max heap size?

• If your CumulativeGCTimeInSeconds is increasing by more than 2 seconds per
stats interval then look to increase the Max Heap Size to reduce this. If your
UsedMemoryInMB is never close to your InitialMemoryInMB then this indicates
that you are preallocating more memory for the heap then necessary and could
reduce the JVM Min Heap Size value for you execution group to a value closer to
the UsedMemoryInMB value. Changes to these values this should be done
gradually to find the optimum settings.

Comparison with Existing Accounting
and Stats

• The existing (pre-7.0) accounting and stats

• provides metrics related to message flows (e.g. number of messages
processed)

• is useful for charge-back (accounting) as well as monitoring performance

• allows users to specify snaphot or archive reporting periods, and how data
should be collected - by thread, node or specific node terminals

• see Information Center topic "Monitoring message flow performance“

• The new resource statistics

• is not tied to individual message flows (e.g. JVM memory usage)

• is of limited use for accounting purposes

• complements the existing accounting and stats metrics and is
enabled/disabled separately

• supports the Snapshot reporting period

Summary

• Message Broker has built-in support for Business Activity
Monitoring

• Designed for WebSphere Business Monitor / CBE integration

• Highly configurable

• Can be administered without the toolkit

• Also supports audit, capture/replay scenarios

• Message Broker has built-in accounting/statistics reporting

• Performance of flows, nodes, threads

• Accounting origin (useful for chargeback)

• Visualised in MBX

• Message Broker has built-in resource statistics reporting

• Performance of resource managers (such as JVM)

• Visualised in MBX

84

Copyright and Trademarks

85

© IBM Corporation 2011. All rights reserved. IBM, the
IBM logo, ibm.com and the globe design are
trademarks of International Business Machines
Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is
available on the Web at "Copyright and trademark
information" at www.ibm.com/legal/copytrade.shtml.
Other company, product, or service names may be
trademarks or service marks of others.

